
Verifiable Differential Privacy

Arjun Narayan? Ariel Feldman‡ Antonis Papadimitriou? Andreas Haeberlen?
?University of Pennsylvania ‡University of Chicago

Abstract
Working with sensitive data is often a balancing act be-
tween privacy and integrity concerns. Consider, for instance,
a medical researcher who has analyzed a patient database to
judge the effectiveness of a new treatment and would now
like to publish her findings. On the one hand, the patients
may be concerned that the researcher’s results contain too
much information and accidentally leak some private fact
about themselves; on the other hand, the readers of the pub-
lished study may be concerned that the results contain too
little information, limiting their ability to detect errors in the
calculations or flaws in the methodology.

This paper presents VerDP, a system for private data anal-
ysis that provides both strong integrity and strong differen-
tial privacy guarantees. VerDP accepts queries that are writ-
ten in a special query language, and it processes them only
if a) it can certify them as differentially private, and if b) it
can prove the integrity of the result in zero knowledge. Our
experimental evaluation shows that VerDP can successfully
process several different queries from the differential privacy
literature, and that the cost of generating and verifying the
proofs is practical: for example, a histogram query over a
63,488-entry data set resulted in a 20 kB proof that took 32
EC2 instances less than two hours to generate, and that could
be verified on a single machine in about one second.

1. Introduction
When working with private or confidential data, it is of-
ten useful to publish some aggregate result without compro-
mising the privacy of the underlying data set. For instance,
a cancer researcher might study a set of detailed patient
records with genetic profiles to look for correlations between
certain genes and certain types of cancer. If such a correla-
tion is found, she might wish to publish her results in a medi-
cal journal without violating the privacy of the patients. Sim-
ilar challenges exist in other areas, e.g., when working with
financial data, census data, clickstreams, or network traffic.

In each of these scenarios, there are two separate chal-
lenges: privacy and integrity. On the one hand, protecting the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741978

privacy of the subjects who contributed the data is clearly
important, but doing so effectively is highly nontrivial: ex-
perience with cases like the AOL search data [1] or the Net-
flix prize [3] has shown that even sanitized or aggregate data
will often reveal more information than intended, especially
in the presence of auxiliary information [37]. On the other
hand, without the original data it is impossible for others to
verify the integrity of the results. Mistakes can and do oc-
cur (even when the author is a Nobel prize winner [23]), and
there have been cases where researchers appear to have fab-
ricated or manipulated data to support their favorite hypoth-
esis [6, 12, 27]; this is why reproducibility is a key principle
of the scientific method. Overall, this leaves everyone dissat-
isfied: the subjects have good reason to be concerned about
their privacy, the audience has to blindly trust the analyst that
the results are accurate, and the analyst herself is unable to
reassure either of them, without violating privacy.

Recent work on differential privacy [13, 15] has provided
a promising approach to addressing the first challenge. At a
high level, differential privacy works by a) preventing the
data of any individual subject from having a distinguish-
able effect on the published result, and by b) adding a small
amount of random “noise” from a carefully chosen distribu-
tion, e.g., the Laplace distribution. For instance, if the data
set contains 47 cancer patients, the analyst might publish that
the number is 49 “plus or minus a small amount”. (The extra
imprecision can be handled in the same way as other forms
of imprecision that naturally exist in experimental data, e.g.,
due to sampling error.) Differential privacy rests on a solid
mathematical foundation and can give strong, provable guar-
antees [15]; also, a number of practical tools for differen-
tially private data analysis have recently been developed, in-
cluding PINQ [30], Airavat [40], and Fuzz [18, 21].

However, while this approach can reliably protect pri-
vacy, it does not help with integrity. Indeed, it makes things
worse: even if the private data set were made publicly avail-
able, it would still not be possible to verify the published re-
sults, since the analyst can freely choose the noise term. For
instance, if there are really 47 cancer patients but the analyst
would for some reason prefer if the count were 150, she can
simply claim to have drawn the noise term +103 from the
Laplace distribution (which has support on all the reals).

This paper proposes a solution to this problem: we
present VerDP, a technique for privacy-preserving data anal-
ysis that offers both strong privacy and strong integrity guar-
antees. Like several existing tools, VerDP provides the ana-
lyst with a special query language in which to formulate the



computation she would like to perform on the private data
set. VerDP then analyzes the query and tries to certify two
separate properties: 1) that the query is differentially private,
and 2) that there is an efficient way to prove, in zero knowl-
edge, that the query was correctly evaluated on the private
data set. The former ensures that the result is safe to publish,
while the latter provides a way to verify integrity. To prevent
manipulation, VerDP ensures that the analyst cannot control
the random noise term that is added to the result, and that
this, too, can be verified in zero knowledge.

Our approach builds on our prior work on the Fuzz com-
piler [18, 39], which uses a linear type system to certify
queries as differentially private, as well as on the Pantry sys-
tem [8] for proof-based verifiable computation. However, a
simple combination of Fuzz and Pantry does not solve our
problem. First, there are differentially private queries that,
if straightforwardly expressed as verifiable programs, would
leak private information through the programs’ structures
(e.g. those that employ data-dependent recursion). We ad-
dress this problem by creating a verifiable subset of Fuzz,
called VFuzz, that prevents these leaks without substantially
compromising expressiveness. Second, because differential
privacy is typically used with large data sets, a naı̈vely con-
structed verifiable program would be enormous, and con-
structing proofs would take far too long. To overcome this
challenge, we break queries down into smaller components
that can be proved more quickly and that can take advan-
tage of parallelism and batch processing. This allows us to
amortize the high setup costs of verifiable computation.

We built a prototype implementation of VerDP, and eval-
uated it by running several differentially private queries that
have been discussed in the literature, from simple counting
queries to histograms and k-means clustering. We found that
a histogram query on a private data set with 63,488 entries
resulted in a 20 kB proof that took 32 Amazon EC2 GPU
instances less than two hours to generate (an investment of
approximately $128, at current prices) and that could be ver-
ified on one machine in about one second. In general, our
results show that a research study’s results can be verified
quite efficiently even without access to fast networks or pow-
erful machines. Moreover, the cost of constructing a proof,
while high, is not unreasonable, given that it can be done
offline and that it only needs to be done once for each re-
search study. Proof generation time can be further improved
by adding machines, as VerDP is highly parallelizable.

VerDP does not protect against malicious analysts who
intentionally leak private data. But it makes experiments
based on private data verifiable and repeatable for the first
time — a key requirement for all experimental science. Our
main contributions are as follows:
• VFuzz, a query language for computations with certifiable

privacy and verifiable integrity (Section 4);
• The design of VerDP, a system for verifiable, differentially

private data analysis (Section 5); and

Data set PublicationData

AnalystCuratorSubjects Readers

Figure 1. The scenario we address in this paper.

• A prototype implementation of VerDP and its experimen-
tal evaluation (Sections 6 and 7).

2. Overview
Figure 1 illustrates the scenario we address in this paper. A
group of subjects makes some sensitive data, such as infor-
mation about their income or their health, available to a cu-
rator. The curator then grants access to the resulting data
set db to a (carefully vetted) group of analysts, who study
the data and then publish their findings to a group of read-
ers. This separation between curator and analyst reflects a
common practice today in large-scale studies using sensitive
data, where the raw data is often hosted by a single organiza-
tion, such as the census bureau, the IPUMS data sets [28], the
iDASH biomedical data repository [26], or the ICPSR data
deposit archive [25]. Each analyst’s publication contains the
results of at least one query q that has been evaluated over the
private data set db; typical examples of queries are aggregate
statistics, such as the average income of a certain group, or
the number of subjects that had a certain genetic condition.

We focus on two specific challenges. First, the subjects
may be concerned about their privacy: the published result
q(db) might accidentally contain “too much” information,
so that readers can recover some or all of their sensitive
data from it. This concern could make it more difficult for
the curator to recruit subjects, and could thus restrict the
data sets that are available to potential analysts. Second,
some readers may be concerned about integrity: a dishonest
analyst could publish a fake or biased q(db), and a careless
analyst could have made mistakes in her calculations that
would invalidate the results. Since the data set db is sensitive
and the readers do not have access to it, the analyst has no
way to alleviate such concerns.

2.1 Goals

In designing a system for this scenario, we focus on enforc-
ing two properties:

• Certifiable privacy: It should be possible to formally
prove, for a large class of queries q, that the result q(db)
does not leak too much information about any individual
subject.
• Verifiable integrity: It should be possible to verify that

a published result q(db) is consistent with the private
data set db, without leaking any data that is not already
contained in q(db).



These properties help all four parties: The curator could
promise the subjects that all published results will be cer-
tified as private, which could alleviate their privacy concerns
and help the curator recruit subjects more easily. The an-
alyst could be sure that her published results are not de-
anonymized later and thus expose her to embarrassment and
potential liability. Finally, interested readers could verify the
published results to gain confidence that they have been
properly derived from the private data — something that is
not currently possible for results based on data that readers
are not allowed to see.

2.2 Threat model

The primary threat in our scenario comes from the analyst.
We consider two types of threats: a blundering analyst ac-
cidentally publishes results that reveal too much about the
data of some subjects, while a dishonest analyst publishes
results that are not correctly derived from the private data set.
Both types of threats have been repeatedly observed in prac-
tice [1, 6, 12, 27, 37]; we note that dishonest analysts would
be much harder to expose if differentially private studies be-
come more common, since the addition of ‘random’ noise
would give them plausible deniability. In this work, we do
not consider analysts that leak the raw data: information flow
control is an orthogonal problem to ours, which focuses on
declassified (and published) data.

We rely on the separation of duties between the curator
(who collects the data) and the analyst (who studies it) to
prevent a dishonest analyst from maliciously choosing sub-
jects in order to produce a desired study result. This seems
reasonable because real-world data collectors, like the Cen-
sus Bureau, serve many analysts and are not likely to have a
vested interest in the outcome of any one analyst’s study. Be-
sides, the data set may be collected, and publicly committed
to, long before a given analyst formulates her query. This is
common today in many social science and medical research
projects.

We assume that the set of readers may contain, now or
in the future, some curious readers who will try to recover
the private data of certain subjects from the published re-
sults q(db). The curious readers could use the latest de-
anonymization techniques and have access to some auxiliary
information (such as the private data of certain other sub-
jects). However, we assume that readers are computationally
bounded and cannot break the cryptographic primitives on
which VerDP is based.

A dishonest analyst might attempt to register many vari-
ants of the same query with the curator, with the hope of
obtaining results with different noise terms, and then pub-
lish only the most favorable result. However, it should not
be difficult for the curator to detect and block such attacks.

2.3 Strawman solutions

Intuitively, it may seem that there are several simple solu-
tions that would apply to our scenario. However, as illus-

function kMeansCluster (db: data) {

centers := chooseInitialCenters();

repeat

centers := noise(update(db, centers));

until (centers.converged);

return centers;

}

Figure 2. A very simple program for which a naı̈vely con-
structed ZKP circuit would leak confidential information.

trated by several high-profile privacy breaches [1, 3], intu-
ition is often not a good guide when it comes to privacy;
simple solutions tend to create subtle data leaks that can be
exploited once the data is published [37]. To illustrate this
point, and to motivate the need for solid formal foundations,
we discuss a few strawman solutions below.
Trusted party: One approach would be to simply have the
curator run the analyst’s query herself. This is undesirable
for at least two reasons. First, such a system places all the
trust in the curator, whereas with VerDP, fraud requires
collusion between the curator and the analyst. Second, such
a design would not allow readers to detect non-malicious
errors in the computation, as they can with VerDP.
ZKP by itself: Another approach would be to use an existing
tool, such as ZQL [16], that can compile computations on
private data into zero-knowledge proofs (ZKPs). Although
such systems would prevent readers from learning anything
but a query’s results, they do not support differential privacy,
and so they would not provide any meaningful limit on
what readers could infer from the results themselves. For
example, suppose that the private data db consists of the
salary si of each subject i, and that the analyst publishes the
average salary q(db) := (

∑
i si)/|db| . If an adversary wants

to recover the salary s j of some subject j and already knows
the salaries of all the other subjects, he can simply compute
s j := |db| ·q(db)−

∑
i, j si. In practice, these attacks can be a

lot more subtle; see, e.g., [37].
Naı̈ve combination of DP and ZKP: A third approach
would be to modify an existing differentially private data
analysis tool, such as PINQ [30] or Airavat [40], to dy-
namically output a circuit instead of executing a query di-
rectly, and to then feed that circuit to a verifiable computa-
tion system like Pinocchio [38]. Performance would obvi-
ously be a challenge, since a naı̈ve translation could produce
a large, unwieldy circuit (see Section 5.4); however, a much
bigger problem with this approach is that private data can
leak through the structure of the circuit, which Pinocchio
and similar systems assume to be public. Figure 2 shows a
sketch of a very simple program that could be written, e.g.,
in PINQ, to iteratively compute a model that fits the private
data. But since the number of iterations is data-dependent,
no finite circuit can execute this program for all possible
inputs – and if the circuit is built for the actual number of
iterations that the program performs on the private data, an



attacker could learn this number by inspecting the circuit,
and then use it to make inferences about the data. To reli-
ably and provably prevent such indirect information leaks, it
is necessary to carefully co-design the analysis tool and the
corresponding ZKP, as we have done in VerDP.

3. Background
3.1 Differential Privacy

Differential privacy [15] is one of the strongest privacy guar-
antees available. In contrast to other solutions such as k-
anonymity [44], differential privacy offers provable guaran-
tees on the amount of information that is leaked, regardless
of the auxiliary knowledge an adversary may have.

Differential privacy is a property of randomized functions
that take a database as input, and return an aggregate output.
Informally, a function is differentially private if changing
any single row in the input database results in almost no
change in the output. If we view each row as consisting of
the data of a single individual, this means that any single
individual has a statistically negligible effect on the output.
This guarantee is quantified in the form of a parameter ε,
which corresponds to the amount that the output can vary
based on changes to a single row. Formally, for any two
databases d1 and d2 that differ only in a single row, we say
that f is ε-differentially private if, for any set of outputs R,

Pr[ f (d1) ∈ R] ≤ eε ·Pr[ f (d2) ∈ R]

In other words, a change in a single row results in at most a
multiplicative change of eε in the probability of any output,
or set of outputs.

The standard method for achieving differential privacy
for numeric queries is the Laplace mechanism [15], which
involves two steps: first calculating the sensitivity s of the
query – which is how much the un-noised output can change
based on a change to a single row – and second, adding noise
drawn from a Laplace distribution with scale parameter s/ε,
which results in ε−differential privacy. (Most empirical stud-
ies already deal with some degree of “noise”, e.g., due to
sampling error, and the extra noise from the Laplace mech-
anism can be handled in the same way, e.g., with hypothesis
testing [24].) Calculating the sensitivity of a given program
is non-trivial, and is often the hardest part of building a dif-
ferentially private system.

Fortunately, differential privacy has two additional prop-
erties that make it tractable to reason about. First, it is com-
posable with arbitrary post-processing, with no further loss
of privacy. As a result, once we have built a core set of prim-
itives whose output is provably differentially private, we can
freely post-process the results of those primitives, as long as
the post-processing does not touch the private database. Sec-
ond, if we evaluate two functions f1 and f2 that are ε1- and
ε2-differentially private, respectively, publishing both results
is at most (ε1 + ε2)-differentially private. In the differential
privacy literature, this property is often used to keep track

of the amount of private information that has already been
released: we can define a privacy budget εmax that corre-
sponds to the maximum loss of privacy that the subjects are
willing to accept, and then deduct the “cost” of each sub-
sequent query from this budget until it is exhausted. For a
detailed discussion of εmax, see, e.g., [24].

As originally proposed [15], differential privacy is an
information-theoretic guarantee that holds even if the ad-
versary has limitless computational power. However, from
an implementation perspective, this would rule out the use
of most cryptographic primitives, which typically (and rea-
sonably) assume that the adversary cannot perform certain
tasks, such as factoring large numbers. Mironov et al. [33]
suggested a relaxation called computational differential pri-
vacy that assumes a computationally bounded adversary, and
this is the definition we adopt in this paper.

3.2 Proof-based verifiable computation

VerDP builds on recent systems for proof-based verifiable
computation [8, 38]. These systems make it possible for a
prover P to run a program Ψ on inputs x and to then provide
a verifier V with not only the results Ψ(x), but also with
a proof π that demonstrates, with high probability, that the
program was executed correctly. (In our scenario, the ana-
lyst would act as the prover, the program would be the query,
and any interested reader could become a verifier.) This cor-
rectness guarantee only depends on cryptographic hardness
assumptions, and not on any assumptions about the prover’s
hardware or software, which could be arbitrarily faulty or
malicious. Furthermore, these systems are general because
they typically offer compilers that transform arbitrary pro-
grams written in a high-level language, such as a subset of
C, into a representation amenable to generating proofs. This
representation, known as constraints, is a system of equa-
tions that is equivalent to Ψ(x) in that proving knowledge of
a satisfying assignment to the equations’ variables is tanta-
mount to proving correct execution of the program.

VerDP uses the Pantry [8] system for verifiable compu-
tation, configured with the Pinocchio [38] proof protocol.
Together, Pantry and Pinocchio have two other crucial prop-
erties. First, unlike other systems that require the verifier to
observe the program’s entire input, Pantry allows the verifi-
able computation to operate on a database stored only with
the prover, as long as the verifier has a commitment to the
database’s contents. (In Pantry, a commitment to a value v is
Comm(v) := HMACr(v), i.e., a hash-based message authen-
tication code of v with a random key r. Comm(v) binds the
prover to v – he can later open the commitment by revealing
v and r, but he can no longer change v – and it also hides the
value v until the commitment is opened.) Second, Pinocchio
enables the proof of computation to be non-interactive and
zero-knowledge. As a result, once the proof is generated, it
can later be checked by any verifier, and the verifier learns
nothing about the program’s execution or the database it op-
erated on, other than what program’s output implies. If the



computation described by the program is differentially pri-
vate — as is true of all well-typed VFuzz programs [39] —
and if the program itself is compiled without looking at the
private data, then neither the output nor the structure of the
proof can leak any private data.

The full details of Pinocchio’s proof protocol are beyond
the scope of this paper, but there is one aspect that is relevant
here. In Pinocchio’s proof protocol, some party other than
the prover (e.g., the verifier) first generates a public evalua-
tion key (EK) to describe the computation, as well as a small
verification key (VK). The prover then evaluates the compu-
tation on the input x and uses the EK to produce the proof π;
after that, anyone can then use the VK to check the proof.

3.3 Computing over a database

As we mention above, Pantry allows Ψ to compute over a
database that is not included in the inputs x and outputs
Ψ(x), which, in VerDP’s case, comes from the curator. Pantry
makes this possible by allowing the prover P to read and
write arbitrarily-sized data blocks from a block store. To
prevent P from lying about blocks’ contents, blocks are
named by the collision resistant hashes of their contents, and
the compiler transforms each read or write into a series of
constraints corresponding to computing the block’s hash and
comparing it to the expected value (i.e. the block’s name).
In this way, a computationally-bound P can only satisfy the
constraints C if it uses the correct data from the block store.

Ψ can compute new block names during its execution
and retrieved blocks can contain the names of other blocks,
but the name of at least one block must be known to the
verifier V. One possibility is to include the database’s root
hash in the input x that V observes. But, in VerDP, readers
cannot be allowed to see the root hash because it could
leak information about the database’s contents. Instead, x
only contains a cryptographic commitment to the database’s
root hash supplied by the curator [8, §6]. The commitment
binds the analyst to the database’s contents while hiding the
root hash from readers. Furthermore, the compiler inserts
constraints into C that are only satisfiable if the analyst
correctly opens the commitment to the database’s root hash.

3.4 Performance of verifiable computation

Despite recent improvements, verifiable computation sys-
tems impose significant overhead on P, often by a factor of
up to 105 [8]. For verification, however, each new program
has high setup costs, but every subsequent execution of that
program (on different inputs) can be verified cheaply. Cre-
ating an EK and a VK takes time linear in the number of
steps in the program — often tens of minutes for the cura-
tor — but then readers can verify π in seconds. Not surpris-
ingly, MapReduce-style applications, where a small program
is executed many times over chunks of a larger data set, are
ideally suited to these limitations, and VerDP exploits this
fact (see Section 5.2). Note that commitments are relatively
costly in Pantry, and so VerDP uses them sparingly.

4. The VFuzz language
VerDP’s query language is based on the Fuzz language for
differentially private data analysis [18, 21, 39] because: 1) it
is sufficiently expressive to implement a number of practical
differentially-private queries, and 2) it uses static analysis
to certify privacy properties without running the query or
accessing the data.

4.1 The Fuzz query language

We begin by briefly reviewing the key features of the Fuzz
query language. Fuzz is a higher-order, dependently typed
functional language; queries are written as functions that
take the data set as an argument and return the value that
the analyst is interested in. Fuzz’s type system for inferring
the sensitivity of functions is based on linear types [39].
It distinguishes between ordinary functions f : τ→ σ that
can map arbitrary elements of type τ to arbitrary elements
of type σ, and functions f : τ ( k σ that have an upper
bound k on their sensitivity – in other words, a change in the
argument can be amplified by no more than k in the result.
The sensitivity is used to calculate how much random noise
must be added to f’s result to make it differentially private.

Fuzz offers four primitive functions that can operate di-
rectly on data sets: map, split, count, and sum. map :
τ bag → (τ → σ) ( σ bag1 applies a function of
type τ → σ to each element of type τ, whereas split :
τ bag → (τ → bool) ( τ bag extracts all elements
from a data set d that match a certain predicate of type
τ → bool. With the restriction that τ bag = σ bag = db
both functions take a database and a predicate function of
appropriate type, and return another data set as the result.
count d : db→ R returns the number of elements in data
set d, and sum d : db→ R sums up the elements in data set
d; both return a number.

Fuzz also contains a probability monad © that is applied
to operations that have direct access to private data. The only
way to return data from inside the monad is to invoke a prim-
itive called sample that adds noise from a Laplace distri-
bution based on the sensitivity of the current computation.
Reed et al. [39] has shown that any Fuzz program with the
type db→ ©τ is provably differentially private; intuitively,
the reason is that the type system prevents programs from
returning values unless the correct amount of noise has been
added to them.

Figure 3 shows a “hello world” example written in Fuzz
that returns the (noised) number of persons in a data set
whose age is above 40. over 40 is a function with type
row → bool. The split primitive maps this function over
each individual row, and counts the rows where the result of
over 40 was true. This result is noised with sample, and
returned as the final output.

1 Fuzz uses the type bag to refer to multisets. A τ bag is a multiset consisting
of τ elements.



function over 40(r : row) : bool {

r.age > 40

}

function main (d :[1] db) : fuzzy num {

let peopleOver40 = split over 40 d in

return sample fuzz count peopleOver40

}

Figure 3. A simple program written in Fuzz that counts the
individuals over 40 in a database of individuals’ ages.

4.2 From Fuzz to VFuzz

Fuzz already meets one of our requirements for VerDP: it
can statically certify queries as differentially private, without
looking at the data. However, Fuzz programs cannot directly
be translated to circuits, for two different reasons: 1) the size
of the data set that results from a split can depend on the
data, and 2) map and split allow arbitrary functions and
predicates, including potentially unbounded, data-dependent
recursion. Thus, if the execution of a Fuzz program were
naı̈vely mapped to a circuit, the size and structure of that
circuit could reveal facts about the private input data.

Our solution to this problem consists of two parts. To
address the first problem, all internal variables of type db
have a fixed size equal to that of the input database, and
VFuzz uses a special “empty” value that is compatible with
map and split but is ignored for the purposes of count
and sum. To address the second problem, we require map
functions and split predicates to be written in a restricted
subset of C that only allows loops that can be fully unrolled
at compile time and disallows unbounded recursion.

We refer to the modified language as Verifiable Fuzz
or VFuzz. Clearly, not all Fuzz programs can be converted
into VFuzz programs, but all practical Fuzz programs we
are aware of can be converted easily (for more details, see
Section 7.1). VFuzz is slightly less convenient than Fuzz
because the programmer must switch between two different
syntaxes, but map and split functions are usually small and
simple. They could be automatically translated to C in most
cases, using standard techniques for compiling functional
programs efficiently, but this is beyond the scope of the
present paper.

We note that there is an interesting connection between
the above problem and the timing side channels in Fuzz pro-
grams that we identified (and fixed) in [21]: the data depen-
dencies that cause the circuit size to change are the same that
also affect query execution time, and vice versa. [21] takes a
different approach to the second problem: it introduces time-
outs on map functions and split predicates, and if the time-
out is exceeded, the function or predicate aborts and returns
a default value. In principle, we could use this approach in
VerDP as well; for instance, we could introduce a cap on the

number of constraints per map or split, unroll the function
or predicate until that limit is reached, and return a default
value if termination does not occur before then. Although
this approach would enable VFuzz to be more expressive, it
would yield a highly inefficient set of constraints.

4.3 Are VFuzz programs safe?

With these changes, all VFuzz programs can be translated
to circuits safely, without leaking private data. To see why,
consider that all VFuzz programs could be partitioned into
two parts: one that operates on values of type db (and thus on
un-noised private data) and another that does not. We refer
to the former as the “red” part and to the latter as the “green”
part. Valid programs begin in red and end in green, but
they can alternate between the two colors in between – e.g.,
when a program first computes a statistic over the database
(red), samples it (green), and then computes another statistic,
based on the sampled output from the earlier statistic (red).
The boundary from red to green is formed by count and
sum, which are the only two functions that take a db as an
argument and return something other than db [21].

Crucially, all the red parts can be translated statically be-
cause 1) the only values they can contain outside of map and
split are of type db, which has a fixed size; 2) the functions
and predicates in VFuzz’s map and split are written di-
rectly in restricted C; and 3) the four data set primitives (map,
split, count, and sum) can be translated statically because
they simply iterate over the entire data set. We emphasize
that, because circuits are generated directly from VFuzz pro-
grams without looking at the private database, the resulting
circuits cannot depend on, and thus cannot leak, the private
data in any way.

What about the green parts? These are allowed to contain
data-dependent recursion (and generally all other features
of the original Fuzz), but the only way that data can pass
from red to green is by sampling, which adds the requisite
amount of noise and is therefore safe from a privacy perspec-
tive. (Unlimited sampling is prevented by the finite privacy
budget.) Indeed, since the green parts of a VFuzz program
can only look at sampled data, and the differential privacy
guarantees remain even with arbitrary post-processing [15],
there is no need to translate the green parts to circuits at
all – the analyst can simply publish the sampled outputs of
the red parts, and the readers can re-execute the green parts,
e.g., using the standard Fuzz interpreter, or any other pro-
gramming language runtime, incurring no additional crypto-
graphic overhead. A proof of VFuzz’s safety is omitted here
due to space constraints, but is available in the extended ver-
sion [35].

5. The VerDP system
This section describes VerDP’s design and how it realizes
verifiable, privacy-preserving data analysis for queries writ-
ten in VFuzz.



AnalystCurator

Subjects Readers

1
2

+ 3

4

5

6

Figure 4. Workflow in VerDP. The numbers refer to the
steps in Section 5.1.

5.1 VerDP’s workflow

Figure 4 illustrates VerDP’s workflow, which consists of the
following steps:

1. The database curator collects the private data of each sub-
ject into a data set db, and then publishes a commitment
Comm(db) to it (Section 5.3). The curator also creates and
maintains a privacy budget for the data set.

2. An analyst requests the data set from the curator and is
vetted. If her request is granted, the analyst studies the
data, formulates a hypothesis, and decides on query q for
which she wants to publish the results.

3. The analyst submits q to the curator,2 who compiles and
typechecks it with the VFuzz compiler to ensure that it
is differentially private. If q fails to typecheck or exceeds
db’s privacy budget, the analyst must reformulate q.

4. If q is approved, the compiler converts all of the “red”
portions of q into a series of verifiable programs (Ψ1, . . . ,Ψm)
(see Section 5.2). For each Ψi, the curator generates an
evaluation key EKi and a verification key VKi, and gives
the EKs to the analyst while making the VKs public. Fi-
nally, the curator generates a random seed r, gives it to
the analyst, and publishes a commitment to it Comm(r).

5. The analyst runs q by executing the verifiable programs
and publishes the result q(db). She adds noise to q(db) by
sampling from a Laplace distribution using a pseudoran-
dom generator seeded with r. In addition, every time she
runs Ψi — and she often runs a given verifiable program
multiple times (see below) — she uses the corresponding
EKi to produce a proof π that the program was executed
correctly (Section 5.4). She then publishes the proofs πi.
Finally, for every value v passed from one verifiable pro-
gram to another, she publishes a commitment Comm(v).

6. Readers who wish to verify the analyst’s results ob-
tain q and begin running its “green” portions. Every

2 VerDP actually enables a further separation of duties: because they can be
created solely from q, the EKs could be generated by a party other than the
curator, which never has to see db at all.

+

over_40 count sample

Commitments

+

+
+

+

+
+

+

Commitments

+

+

+
+

+

+
Data set Map tiles Reduce tiles Noising tile

+

Figure 5. The MapReduce-like structure of VFuzz pro-
grams. The small circles represent commitments, and the la-
bels at the top show the parts of the over40 program from
Figure 3 that correspond to each phase.

time they reach a “red” portion, they obtain the corre-
sponding proofs, commitments, and verification keys and
check that that portion of q was executed correctly (Sec-
tion 5.5). If they successfully verify all of the “red” por-
tions of q and obtain the same result as the analyst after
running the “green” portions, they accept the results.

Next, we explain each of these steps in more detail.

5.2 The structure of VFuzz programs

VerDP’s design is guided by both the properties of the VFuzz
language (Section 4) and the performance characteristics of
verifiable computation (Section 3.4). On the one hand, we
observe that the “red” portions of every VFuzz query have a
similar MapReduce-like structure: first, there is a map phase
where some combination of map functions and split predi-
cates are evaluated on each row of the data set independently,
and second, there is a reduce phase where some combination
of count and sum operators aggregate the per-row results.
Finally, there is a phase that adds random noise to this ag-
gregate value. Returning to the example in Figure 3, the map
phase corresponds to the split operator with the over40
predicate, the reduce phase corresponds to the count oper-
ator, and the noise phase corresponds to the sample opera-
tor. On the other hand, verifiable computation is most effi-
cient, not when there is a large monolithic program, but in a
MapReduce setting where a small program is executed many
times over chunks of a larger data set, thereby amortizing the
high setup costs.

These observations led us to the design shown in Figure 5.
The VFuzz compiler converts each phase of every “red”
section into its own independent verifiable program, written
in a restricted subset of C. These three verifiable programs
are compiled separately, and the curator generates a separate
EK and VK for each one. To amortize each program’s setup
costs, we exploit the fact that both the map and reduce phases
are embarrassingly parallel: their inputs can be partitioned
and processed independently and concurrently. Thus, the



map and reduce programs only operate on chunks of their
phase’s input, and the analyst processes the entire input by
running multiple map and reduce instances, potentially in
parallel across multiple cores or machines.3 We refer to these
instances as tiles because VerDP must run enough tiles to
cover the entire data flow. For each tile that she executes,
the analyst produces a proof π that readers must verify.
Fortunately, these proofs are small and cheap to verify.

If a VFuzz query is broken down into separate verifiable
programs, how does the analyst prove to readers that she has
correctly used the output v of one phase as the input to the
next without revealing un-noised intermediate values? The
answer is that, for each tile in each phase, she publishes a
commitment Comm(v) to the tile’s output, which is given as
input to a tile in the next phase (blue circles in Figure 5).
The analyst can only satisfy the constraints of each phase’s
verifiable program if she correctly commits and decommits
to the values passed between phases. Readers can later use
the Comm(v)s along with the proofs (πs) for each instance in
each phase to verify the “red” portions of the query.

5.3 Committing to the data set

Recall our verifiable integrity goal: the readers should be
able to verify that some published result r was produced
by evaluating a known query q over a private database db
– without having access to the database itself! To make this
possible, the curator publishes a commitment to the data
set Comm(db), and the constraints of every mapper program
are chosen so that they can only be satisfied if the analyst
actually uses the data set corresponding to Comm(db) when
executing the query (see Section 3.3). In other words, the
analyst must prove that she knows a database db that a) is
consistent with Comm(db), and b) produces r = q(db).

In principle, the curator could commit to the flat hash of
the data set. But, in that case, each mapper would have to
load the entire data set in order to check its hash. As a result,
each mapper program would require Ω(|db|) constraints, and
the mappers would be too costly for the analyst to execute
for all but the smallest data sets. For this reason, the curator
organizes the data set as a hash tree where each tree node
is a verifiable block (see Section 3.3), and each leaf node
contains the number of rows that an individual map tile can
process; we refer to the latter as a leaf group. The curator can
then commit to the root hash of this tree. In this way, each
map tile only needs O(log |db|) constraints.

Because all loop bounds and array sizes must be deter-
mined statically, the number of rows in each leaf must be
fixed at compile-time. The number of rows per leaf must be
chosen carefully, as it affects the runtime of the map tiles.
Having too few per leaf is inefficient because even opening
the commitment to the db’s root hash incurs a high cost that

3 Pantry’s MapReduce implementation exploits similar parallelism [8, §4],
but VerDP’s use case is even more embarrassingly parallel. Whereas in
Pantry, each mapper has to produce an output for every reducer, in VerDP
each mapper instance only needs to send input to a single reducer instance.

is best amortized across many rows. But having too many
rows per leaf results in a map tile that takes to long to ex-
ecute and exhausts the available memory. As each map tile
processes at least one leaf, the number of leaves represents
an upper bound on the available parallelism.

Beside committing to the data set, the curator also com-
mits to a random seed r that the analyst uses to generate
noise (see Section 5.4). This seed must be private because if
it were known to the readers, then they could recompute the
noise term, subtract it from the published result, and obtain
the precise, un-noised result of the query. The seed could be
chosen by the curator, or the research subjects could gener-
ate it collaboratively.

5.4 Phases of VerDP computations

Recall from Section 4.3 that VFuzz programs consist of red
and green parts. Before VerDP can generate tiles for a query,
it must first identify all the red parts of the query; this can
be done with a simple static analysis that traces the flow of
the input data set db to the aggregation operators (count and
sum) that mark the transition to green.
The map phase: Every mapper program has a similar struc-
ture. It has at least two inputs: Comm(db) and an integer
that identifies which leaf of the data set tree it should pro-
cess. It then proceeds as follows. First, it verifiably opens
Comm(db) and then retrieves its leaf of the data set by fetch-
ing O(log |db|) verifiable blocks. Second, it performs a se-
quence of map and split operations on each row in its leaf
independently. Third, it aggregates the results of these oper-
ations across the rows in its leaf using either the sum or the
count operator. Finally, it outputs a commitment to this lo-
cal aggregate value that is passed along to the reduce phase.
The reduce phase: Ideally, the reduce phase could just con-
sist of a single instance of a single program that verifiably
decommitted to all of the map tiles’ outputs, computed their
sum, and then committed to the result. Unfortunately, the
high cost of verifiably committing and decommitting means
that each reduce tile can only handle a handful of input com-
mitments. Consequently, VerDP must build a “tree” of re-
duce tiles that computes the global sum in several rounds, as
illustrated in Figure 5. Thus, if k is the number of map tiles,
then the reduce phase consists of O(logk) rounds of reduce
tiles. However, within each round except the last one, multi-
ple reduce tiles can run in parallel. In our experiments (see
Section 7), we use reducers that take only two commitments
as input in order to maximize the available parallelism.

Notably, all VFuzz queries use the same programs for
their reduce and noise phases. Thus, the curator only has
to generate an EK and VK for these programs once for all
analysts, substantially reducing the work required to approve
an analyst’s query.
The noise phase: The noise phase adds random noise drawn
from a Laplace distribution to the aggregate results of the
previous phases. The single noise tile has four inputs: 1)
the sensitivity s of the computation whose result is being



noised, 2) the privacy cost ε of that particular computation,
3) the curator’s commitment Comm(db) to the original data
set, and 4) Comm(r), the curator’s commitment to a random
32-bit seed r. The noise tile works by first converting the
seed to a 64-bit fixed-point number r̄ between 0 and 1, and
then computing s

ε · ln(r̄), using one extra bit of randomness
to determine the sign. If the input is in fact chosen uniformly
at random, then this process will result in a sample from
the Lap(s/ε) distribution. Since our verifiable computation
model does not support logarithms natively, our implemen-
tation approximates ln(r̄) using 16 iterations of Newton’s
method. We also use fixed-point (as opposed to floating-
point) arithmetic to avoid an attack due to Mironov [32],
which is based on the fact that the distance between two
adjacent floating-point values varies with the exponent. To
provide extra protection against similar attacks, our noise
generator could be replaced with one that has been formally
proven correct, e.g., an extension of the generator from [22]
or the generation circuit from [14].

5.5 Proof verification

An interested reader who wants to verify the analyst’s com-
putation needs four ingredients: 1) the curator’s commitment
to the data set the analyst has used; 2) the exact VFuzz code
of the queries; 3) the VK and the query index that the curator
has generated for the analyst; and 4) the analyst’s proof.

The reader begins by using VerDP to type-check each
of the queries; if this check fails, the analyst has failed
to respect differential privacy. If the type check succeeds,
VerDP will (deterministically) compile the query into the
same set of tiles that the analyst has used to construct the
proof. The reader now verifies the proof; if this fails, the
analyst has published the wrong result (or the wrong query).

If the last check succeeds, the reader has established that
the red parts of the published query were correctly evaluated
on the data set that the curator collected, using a noise term
that the analyst was not able to control. As a final step, the
reader plugs the (known but noised) output values of each
red part into the green part of the VFuzz program and runs it
through an interpreter. If this final check succeeds, the reader
can be satisfied that the analyst has indeed evaluated the
query correctly, and since the proof was in zero knowledge,
he has not learned anything beyond the already published
values. Thus, VerDP achieves the goals of certifiable privacy
and verifiable integrity we have formulated in Section 2.1.

5.6 Limitations

VerDP’s integrity check is limited to verifying whether a
query q, given as a specific VFuzz program, will produce a
certain result when evaluated over the data set that the cura-
tor has committed to. This does not mean that q actually does
what the analyst claims it will do – a blundering analyst may
have made a mistake while implementing the query, and a
dishonest analyst may intentionally formulate an obfuscated

query that appears to do one thing but actually does another.
In principle, the readers can detect this because the code of
the query is available to them, but detecting such problems
is not easy and may require some expertise.

Not all differentially private queries can be expressed in
VFuzz, for at least two reasons. First, there are some use-
ful primitives, such as the GroupBy in PINQ [30], that are
not supported by the original Fuzz, and thus are missing in
VFuzz as well. This is not a fundamental limitation: Fuzz
can be extended with new primitives, and these primitives
can be carried over to VFuzz, as long as the structure of the
corresponding proofs does not depend on the private data.
Second, it is known [18] that some queries cannot be auto-
matically certified as differentially private by Fuzz or VFuzz
because the proof relies on a complex mathematical truth
that the type system fails to infer. This is because Fuzz, as a
system for non-experts, is designed to be automated as much
as possible. [18] shows that some of these limitations can be
removed by extending the type system; also, analysts with
more expertise in differential privacy could use a system like
CertiPriv [2] to complete the proof manually. However, these
approaches are beyond the scope of this paper.

6. Implementation
VerDP builds upon two core programs—the VFuzz com-
piler and typechecker, for certifying programs as differen-
tially private, and the Pantry verifiable computation system,
for compiling to a circuit, generating zero knowledge proofs
of correct circuit execution, and verifying the results of the
generated proofs. Verifiable programs are written in a re-
stricted subset of C without recursion or dynamic loops.

Our VFuzz compiler is based on our Fuzz compiler
from [21]; we modified the latter to emit functions in re-
stricted C, and we wrote some additional libraries in C to
support the privileged Fuzz operators map and split, as
well as for generating Laplace noise. We also modified the
Fuzz compiler to accept VFuzz programs as input, as de-
tailed in Section 4.

A single VFuzz query results in multiple verifiable pro-
grams, depending on the number of sample calls. For a
given sample, the VFuzz compiler outputs a map tile pro-
gram, which is run in parallel on each leaf group. The reduce
tile and noising tile programs are fixed and identical across
all queries. A single sample requires a tree of reducers, but
each individual component of the reducer is the same. The
tree is run until there is a single output, which is the actual
un-noised result of the sample call in VFuzz. The final step
is to input this value to the Laplace noising program, which
outputs the final noised result.

For verification, each individual tile needs to be checked
separately. However, since the outputs are not differentially
private, only commitments to the outputs are sent. Only the
final output from the noising tile is differentially private and
thus sent in the clear.



Query Type LoC mod. Samples From
over-40 Counting 2 / 45 1 [15]
weblog Histogram 2 / 45 2 [15]
census Aggregation 9 / 50 4 [9]
kmeans Clustering 46 / 148 6 [7]

Table 1. Queries we used for our experiments (based
on [21]), lines of code modified, and the inspirations.

The VFuzz compiler ignores post-processing instruc-
tions. Fuzz allows for arbitrary computation outside the
probability monad for pretty-printing, etc., but these are not
necessary to protect privacy. Since it would be expensive
(and unnecessary) to compute these post-processing steps as
verifiable programs, we discard them during proof genera-
tion and simply re-execute them during verification.

7. Evaluation
Next, we report results from an experimental evaluation of
our VerDP prototype. Our experiments are designed to an-
swer three key questions: 1) Can VerDP support a variety of
different queries?, 2) Are the costs low enough to be practi-
cal?, and 3) How well does VerDP scale to larger data sets?

7.1 Queries

We used four different queries for our experiments. The first
three are the queries that were used to evaluated Fuzz [21]:
weblog computes a histogram over a web server log that
shows the number of requests from specific subnets; census
returns the income differential between men and women on
a census data set; and kmeans clusters a set of points and
returns the three cluster centers. Each of these queries is
motivated by a different paper from the privacy literature [7,
9, 15], and each represents a different type of computation
(histogram, aggregation, and clustering). We also included
our running example from Figure 3 as an additional fourth
query; we will refer to it here over-40 because it computes
the number of subjects that are over 40 years old. Table 1
shows some statistics about our four queries.

Since VerDP’s query language differs from that of Fuzz,
we had to modify each query to work with VerDP. Specifi-
cally, we re-implemented the mapping function of each map
and the predicate of each split in our safe subset of C. As
Table 1 shows, these modifications were minor and only af-
fected a very few lines of code, and mostly involved syntax
changes in the mapping functions from functional to imper-
ative. Importantly, the changes from Fuzz to VFuzz do not
reduce the expressiveness of the queries nor degrade their
utilities. We also inspected all the other example programs
that come with Fuzz, and found that each could have been
adapted for VerDP with small modifications to the code;
none used constructs (such as unbounded recursion) that
VerDP does not support. This suggests that, in practice, the
applicability of VerDP’s query language is comparable to
Fuzz.

7.2 Experimental setup

Since Pantry can take advantage of GPU acceleration to
speed up its cryptographic operations, and since VerDP can
use multiple machines to run map and reduce tiles in parallel,
we use 32 cg1.4xlarge instances on Amazon EC2 for
our experiments. This instance type has a 64-bit Intel Xeon
x5570 CPU with 16 virtual cores, 22.5 GB of memory, and
a 10 Gbps network card. We used the MPI framework to
distribute VerDP across multiple machines. We reserved one
machine for verification, which is relatively inexpensive; this
left 31 machines available for proof generation.

For our experiments, we used a leaf group size of 2,048,
the largest our EC2 instances could support without running
out of memory. (Recall that this parameter, and thus the
“width” of the map tiles, needs to be defined in advance
by the curator and cannot be altered by the analyst.) We
then generated four synthetic data sets for each query, with
4,096, 16,384, 32,768, and 63,488 rows, which corresponds
to 2, 8, 16, and 31 map tiles. Recall that VerDP’s privacy
guarantee depends critically on the fact that the structure
of the computation is independent of the actual data; hence,
we could have gained no additional insights by using actual
private data. Although some real-world data sets (e.g., the
U.S. census data) are larger than our synthetic data sets, we
believe that these experiments demonstrate the key trends.

7.3 Commitment generation

Before the curator can make the data set available to ana-
lysts, he must first generate a commitment to the data set,
and publish it. To quantify the cost, we measured the time
taken to generate commitments for various database sizes,
as well as the size of the commitment itself.

As expected, generating the commitment is not expen-
sive: we found that the time varied from 1 second for
our smallest data set (4,096 rows) to 3.1 seconds for our
largest data set (63,488 rows). The size of the commitment
is 256 bits, independent of the size of the data set; recall that
the commitment is generated through a hash tree, and only
the final root-hash is committed to. These costs seem prac-
tical, even for a curator with modest resources – especially
since they are incurred only once for each new data set.

7.4 Query compilation and EK generation

With the database and the commitment, the analyst can for-
mulate and test queries in VFuzz. Once the analyst has final-
ized the set of queries, she sends the queries to the curator,
who compiles them and generates an EK and VK for each
tile, as well as the seeds for each noise generator. Since the
curator has to independently recompile the VFuzz queries, it
is important that compilation is relatively inexpensive.

Recall from Section 4.3 that a single VFuzz query can
contain multiple “red” parts, depending on the number of
sample calls, and that each part can consist of multiple
map tiles (depending on the database size), a tree of reduce
tiles, and a single noising tile that returns the final “sample”.



 0

 20

 40

 60

 80

 100

Over_40 Webserver Census K-means

C
o

m
p

ila
ti
o

n
 T

im
e

 (
m

in
u

te
s
)

Figure 6. Compilation time for map tiles as a function of
tile size, for (512, 1024, 2048) rows per tile.

 0

 2

 4

 6

 8

 10

Over_40 Webserver Census K-means

C
o

n
s
tr

a
in

ts
 (

in
 m

ill
io

n
s
)

All other operations
Commitment

Figure 7. Constraints generated for map tiles with (512,
1024, 2048) rows per tile.

Our queries contain between one and six sample calls each.
However, recall that compilation is only required for each
distinct tile; since most map tiles (and all reduce and noising
tiles) are identical, compilation time depends only on the
width of the map tile, but not on the size of the data set.
Time: To estimate the burden on the curator, we bench-
marked the time it took to compile our map, reduce, and
noising tiles, and to generate the corresponding EKs and
VKs; our results are shown in Figure 6. We can see that com-
pilation and key generation is relatively inexpensive, tak-
ing at most 84 minutes for the largest query (k-means). The
compiled binaries are also relatively small, taking at most
14 MB. Note that the curator must compile the binaries in
order to produce the keys; the analyst can either download
the compiled binaries from the curator or recompile them
locally with the EK.
Complexity: We also counted the number of constraints that
were generated during compilation, as a measure of com-
plexity. Figure 7 shows the results for each of the map tiles.
We separate out the number of constraints used for 1) com-
mitment operations, and 2) actual computation. The figure
shows that a large part of the overhead is in commitment
operations. This is why small tile widths are inefficient.

To summarize, the work done by the curator is relatively
inexpensive. Generating commitments is cheap and must be
done only once per data set. The costs of compilation and
key generation are nontrivial, but they are affordable as they
do not grow with the size of the data set.

 0

 20

 40

 60

 80

 100

 120

Map
Over_40

Map
Webserver

Map
Census

Map
K-means

Reduce Noising

P
ro

o
f 

g
e

n
e

ra
ti
o

n
 t

im
e

 (
m

in
u

te
s
)

Figure 8. Time to generate proofs for map tiles of width
2,048, as well as the reduce and noising tiles.

 0

 1

 2

 3

 4

 5

Over_40 Webserver Census K-means

P
ro

je
c
te

d
 p

ro
v
e

r 
ti
m

e
 (

h
o

u
rs

) Noising
Reduce tree

Mapper
Observed

Figure 9. Projected time to generate proofs for databases of
(8k, 16k, 32k, 62k) rows.

7.5 Query execution and proof generation

Once the analyst receives the compiled queries from the cu-
rator, she must run the resulting verifiable program to gener-
ate the results and proof, and then make the proof available
to interested readers. This is the most computationally ex-
pensive step. To quantify the cost, we generated proofs for
each of our four queries, using varying data set sizes.
Microbenchmarks: We benchmarked the map tiles for each
of our four queries, using a tile width of 2,048 rows, as
well as the reduce and noising tiles. (The cg1.4xlarge
instances could not support map tiles with more rows, due
to memory limitations.) Our results are shown in Figure 8.
Proof generation times depend on the complexity of the
query but are generally nontrivial: a proof for a k-means map
tile takes almost two hours. However, recall from Section 5.2
that VerDP can scale by generating tile proofs in parallel on
separate machines: all the map tiles and all the reduce tiles
at the same level of the reduce tree can run simultaneously.
As a result, the time per tile does not necessarily limit the
overall size of the data set that can be supported.
Projected runtimes: For larger databases that require k > 1
map tiles, we estimate the end-to-end running time and cost.
Since all the map tiles can be run in parallel when k machines
are available, a data set of size 2048∗k can be run in the time
it takes to run a single mapper. The reduce tiles, however,
need to be run in at least log2 k stages, since we need to
build a binary tree until we reach a single value, which is
then handed to a noising tile. Figure 9 shows our estimates;



 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000

P
ro

je
c
te

d
 T

im
e

 (
m

in
u

te
s
)

Number of machines

DB size=131K
DB size=524K
DB size=2.09M
DB size=8.38M

Figure 10. Estimated time to run the “over 40” query using
a variable number of machines. Note log-log scale.

doubling the size of the data set only adds a constant amount
to the end-to-end proof generation time, although it does of
course double the number of required machines.
Projected scaling: Figure 10 shows the projected runtime
for different levels of parallelization. VerDP scales very well
with the number of available machines; for instance, 32 ma-
chines can handle 524K rows in about 230 minutes. Eventu-
ally, scalability is limited by the dependencies between the
tiles – e.g., map needs to run before reduce, and the different
levels of the reduce tree need to run in sequence. Note that
the depth of the reduce tree, and thus the amount of non-
parallel work, grows logarithmically with the database size.
End-to-end simulation: To check our projected runtimes,
we ran two end-to-end experiments, using the over-40 and
weblog queries, data sets with 63,488 rows, and our 32
cg1.4xlarge EC2 instances. We measured the total time
it took to generate each proof (including the coordination
overhead from MPI). The results are overlaid on Figure 9 as
individual data points; they are within 3.3% of our end-to-
end results, which confirms the accuracy of our projections.
We also note that, at $2 per instance hour at the time of writ-
ing, the two experiments cost $64 and $128, respectively,
which should be affordable for many analysts.
Proof size: The largest proof we generated was 20 kB.
The very small size is expected: a Pinocchio proof is only
288 bytes, and the commitments are 32 bytes each; each tile
produces a single Pinocchio proof and up to three commit-
ments, depending on the type of tile. Thus, a proof can easily
be downloaded by readers.

7.6 Proof verification

When an interested reader wants to verify a published result,
she must first obtain the commitment from the curator, as
well as the query and the proof from the analyst. She must
then recompile the query with VerDP and run the verifier. To
quantify how long this last step would take, we verified each
of the tiles we generated.

Figure 11 shows our projected verification times, based
on the number of tiles and our measured cost of verifying
each individual tile. We also verified our two end-to-end

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Over_40 Webserver Census K-means

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Observed

Figure 11. Projected time to verify complete programs for
databases of (16k, 32k, 62k) rows on one machine.

proved queries, and those are displayed in the graph. The
measured results were 4.7% faster than our projections, con-
firming the accuracy of the latter.

We note that, during verification, tiles do not have depen-
dencies on any other tiles, so verification could in principle
be completely parallelized. But, at total run times below 3.5
seconds in all cases, this seems unnecessary – readers can
easily perform them sequentially.

7.7 Summary

Our experiments show that VerDP can handle several realis-
tic queries with plausible data set sizes. The time to generate
proofs is nontrivial, but nevertheless seems practical, since
proof generation is not an interactive task – it can be exe-
cuted in the background, e.g., while the analyst is working
on the final version of the paper.

VerDP imposes moderate overhead on the curator. This is
important as a curator might be serving the data set to many
different analysts. Appropriately, the bulk of the computa-
tion time is borne by the analysts. Since the proofs are small
and can be verified within seconds, proof verification is fea-
sible even for readers without fast network connections or
powerful machines.

8. Related Work
Differential privacy: To the best of our knowledge, VerDP
is the first system to provide both differential privacy and
verifiable integrity. Most existing systems focus exclusively
on privacy; for instance, Fuzz [21], PINQ [30], Airavat [40],
GUPT [34], and CertiPriv [2] are all either designed to check
or to enforce that a given query is differentially private. A
few recent systems have considered richer threat models:
for instance, there are some solutions [14, 33, 36] that can
process queries over multiple databases whose curators do
not trust each other, while others [10] can prevent malicious
subjects from providing data that would distort the results.
But none of these systems enable readers to verify that the
execution was performed correctly.
Verifiable computation: Although there has been signif-
icant theoretical work on proof-based verifiable computa-
tion for quite some time (see [38, 43, 47] for surveys),



efforts to create working implementations have only be-
gun recently. These efforts have taken a number of dif-
ferent approaches. One set of projects [11, 45, 46], de-
rived from Goldwasser et al.’s interactive proofs [20], uses
a complexity-theoretic protocol that does not require cryp-
tography, making it very efficient for certain applications.
But, its expressiveness is limited to straight-line programs.
Another line of work [41–43, 47] combines the interactive
arguments of Ishai et al. [29] with a compiler that supports
program constructs such as branches, loops, and inequalities
and an implementation that leverages GPU cryptography.
Zaatar [41], the latest work in that series, exploits the con-
straint encoding of Gennaro et al. [19] for smaller, more ef-
ficient proofs. This encoding is also used by Pinocchio [38],
which offers similar functionality to Zaatar while support-
ing proofs that are both non-interactive and zero-knowledge.
Pantry [8], the system we use for VerDP, enables verifiable
programs to make use of state that is only stored with the
prover and not the verifier while supporting both the Zaatar
and Pinocchio protocols. Recently, several promising works
have enabled support for data-dependent loops via novel cir-
cuit representations [4, 5, 48]; a future version of VerDP
could incorporate techniques from these systems to improve
VFuzz’s expressiveness.
Language-based zero-knowledge proofs: Several existing
systems, including ZKPDL [31], ZQL [16], and ZØ [17],
provide programming languages for zero-knowledge proofs.
ZQL and ZØ are closest to our work: they enable zero-
knowledge verifiable computations over private data for ap-
plications such as personalized loyalty cards and crowd-
sourced traffic statistics. Like VerDP, they provide compil-
ers that convert programs written in a high-level language to
a representation amenable to proofs, but VerDP provides a
stronger privacy guarantee. ZQL and ZØ allow the program-
mer to designate which program variables are made public
and which are kept private to the prover, but he or she has no
way of determining how much private information the veri-
fier might be able to infer from the public values. VerDP, the
other hand, bounds these leaks using differential privacy.

9. Conclusion and Future Work
VerDP offers both strong certifiable privacy and verifiable
integrity guarantees, which allows any reader to hold ana-
lysts accountable for their published results, even when they
depend on private data. Thus, VerDP can help to strengthen
reproducibility – one of the key principles of the scientific
method – in cases where the original data is too sensitive to
be shared widely. The costs of VerDP are largely the costs
of verifiable computation, which recent advances by Pinoc-
chio [38] and Pantry [8] have brought down to practical lev-
els – particularly on the verification side, which is important
in our setting. Even though the costs remain nontrivial, we
are encouraged by the fact that VerDP is efficiently paral-
lelizable, and it can, in principle, handle large data sets.

Acknowledgments
We thank our shepherd Frans Kaashoek and the anony-
mous reviewers for their comments and suggestions. This
work was supported by NSF grants CNS-1065060 and CNS-
1054229, as well as DARPA contract FA8650-11-C-7189.

References
[1] Barbaro, M., Zeller, T., and Hansell, S. A face is exposed

for AOL searcher No. 4417749. The New York Times (Au-
gust 9, 2006). http://www.nytimes.com/2006/08/09/
technology/09aol.html.

[2] Barthe, G., Köpf, B., Olmedo, F., and Zanella Béguelin, S.
Probabilistic relational reasoning for differential privacy. In
Proc. POPL (2012).

[3] Bell, R. M., and Koren, Y. Lessons from the Netflix prize
challenge. SIGKDD Explor. Newsl. 9, 2 (2007).

[4] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and
Virza, M. SNARKs for C: Verifying program executions suc-
cinctly and in zero knowledge. In Proc. CRYPTO (2013).

[5] Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M. Suc-
cinct non-interactive zero knowledge for a von neumann ar-
chitecture. In Proc. USENIX Security (2014).

[6] Blake, H., Watt, H., and Winnett, R. Mil-
lions of surgery patients at risk in drug research
fraud scandal. The Telegraph (March 3, 2011).
http://www.telegraph.co.uk/health/8360667/

Millions-of-surgery-patients-at-risk-in-

drug-research-fraud-scandal.html.

[7] Blum, A., Dwork, C., McSherry, F., and Nissim, K. Practical
privacy: the SuLQ framework. In Proc. PODS (2005).

[8] Braun, B., Feldman, A. J., Ren, Z., Setty, S., Blumberg, A. J.,
andWalfish, M. Verifying computations with state. In Proc.
SOSP (2013).

[9] Chawla, S., Dwork, C., McSherry, F., Smith, A., and Wee,
H. Toward privacy in public databases. In Proc. TCC (2005).

[10] Chen, R., Reznichenko, A., Francis, P., and Gehrke, J. To-
wards statistical queries over distributed private user data. In
Proc. NSDI (2012).

[11] Cormode, G., Mitzenmacher, M., and Thaler, J. Practical
verified computation with streaming interactive proofs. In
Proc. ITCS (2012).

[12] Deer, B. MMR doctor Andrew Wakefield fixed data
on autism. The Sunday Times (February 8, 2009).
http://www.thesundaytimes.co.uk/sto/public/

news/article148992.ece.

[13] Dwork, C. Differential privacy: A survey of results. In Proc.
TAMC (2008).

[14] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed noise
generation. In Proc. EUROCRYPT (2006).

http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.nytimes.com/2006/08/09/technology/09aol.html
http://www.telegraph.co.uk/health/8360667/Millions-of-surgery-patients-at-risk-in-
http://www.telegraph.co.uk/health/8360667/Millions-of-surgery-patients-at-risk-in-
drug-research-fraud-scandal.html
http://www.thesundaytimes.co.uk/sto/public/news/article148992.ece
http://www.thesundaytimes.co.uk/sto/public/news/article148992.ece


[15] Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrat-
ing noise to sensitivity in private data analysis. In Proc. TCC
(2006).

[16] Fournet, C., Kohlweiss, M., Danezis, G., and Luo, Z. ZQL:
A compiler for privacy-preserving data processing. In Proc.
USENIX Security (2013).

[17] Fredrikson, M., and Livshits, B. ZØ: An optimizing dis-
tributing zero-knowledge compiler. In Proc. USENIX Security
(2014).

[18] Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., and
Pierce, B. C. Linear dependent types for differential privacy.
In Proc. POPL (2013).

[19] Gennaro, R., Gentry, C., Parno, B., and Raykova, M.
Quadratic span programs and succinct NIZKs without PCPs.
In Proc. EUROCRYPT (2013).

[20] Goldwasser, S., Kalai, Y. T., and Rothblum, G. N. Delegating
computation: Interactive proofs for muggles. In Proc. STOC
(2008).

[21] Haeberlen, A., Pierce, B. C., and Narayan, A. Differential
privacy under fire. In Proc. USENIX Security (2011).

[22] Hawblitzel, C., Howell, J., Lorch, J. R., Narayan, A., Parno,
B., Zhang, D., and Zill, B. Ironclad apps: End-to-end security
via automated full-system verification. In Proc. OSDI (2014).

[23] Herndon, T., Ash, M., and Pollin, R. Does high public debt
consistently stifle economic growth? A critique of Reinhart
and Rogoff. Working paper 322, Political Economy Research
Institute, University of Massachusetts Amherst, 2013. http:
//www.peri.umass.edu/fileadmin/pdf/working_

papers/working_papers_301-350/WP322.pdf.

[24] Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S., Narayan,
A., Pierce, B. C., and Roth, A. Differential privacy: An
economic method for choosing epsilon. In Proc. CSF (2014).

[25] ICPSR Data Deposit at the University of Michigan. http:
//www.icpsr.umich.edu/icpsrweb/deposit/.

[26] Integrating Data for Analysis, Anonymization and SHaring.
http://idash.ucsd.edu/.

[27] Interlandi, J. An unwelcome discovery. The New York
Times (October 22, 2006). www.nytimes.com/2006/10/
22/magazine/22sciencefraud.html.

[28] Integrated Public Use Microdata Series at the Minnesota Pop-
ulation Center. https://www.ipums.org/.

[29] Ishai, Y., Kushilevitz, E., and Ostrovsky, R. Efficient argu-
ments without short PCPs. In Proc. CCC (2007).

[30] McSherry, F. Privacy Integrated Queries. In Proc. SIGMOD
(2009).

[31] Meiklejohn, S., Erway, C. C., Küpçü, A., Hinkle, T., and
Lysyanskaya, A. ZKPDL: A language-based system for ef-
ficient zero-knowledge proofs and electronic cash. In Proc.
USENIX Security (2010).

[32] Mironov, I. On significance of the least significant bits for
differential privacy. In Proc. CCS (2012).

[33] Mironov, I., Pandey, O., Reingold, O., and Vadhan, S. Com-
putational differential privacy. In Proc. CRYPTO (2009).

[34] Mohan, P., Thakurta, A., Shi, E., Song, D., and Culler, D.
GUPT: Privacy preserving data analysis made easy. In Proc.
SIGMOD (2012).

[35] Narayan, A., Feldman, A., Papadimitriou, A., and Haeberlen,
A. Verifiable differential privacy. Tech. Rep. MS-CIS-15-05,
Department of Computer and Information Science, University
of Pennsylvania, Mar. 2015.

[36] Narayan, A., and Haeberlen, A. DJoin: Differentially private
join queries over distributed databases. In Proc. OSDI (2012).

[37] Narayanan, A., and Shmatikov, V. Robust de-anonymization
of large sparse datasets. In Proc. S&P (2008).

[38] Parno, B., Gentry, C., Howell, J., and Raykova, M. Pinoc-
chio: Nearly practical verifiable computation. In Proc. S&P
(2013).

[39] Reed, J., and Pierce, B. C. Distance makes the types grow
stronger: A calculus for differential privacy. In Proc. ICFP
(2010).

[40] Roy, I., Setty, S., Kilzer, A., Shmatikov, V., and Witchel, E.
Airavat: Security and privacy for MapReduce. In Proc. NSDI
(2010).

[41] Setty, S., Braun, B., Vu, V., Blumberg, A. J., Parno, B., and
Walfish, M. Resolving the conflict between generality and
plausibility in verified computation. In Proc. EuroSys (2013).

[42] Setty, S., McPherson, R., Blumberg, A. J., and Walfish,
M. Making argument systems for outsourced computation
practical (sometimes). In Proc. NDSS (2012).

[43] Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A. J.,
and Walfish, M. Taking proof-based verified computation
a few steps closer to practicality. In Proc.USENIX Security
(2012).

[44] Sweeney, L. k-anonymity: A model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 10, 05 (2002).

[45] Thaler, J. Time-optimal interactive proofs for circuit evalua-
tion. In Proc. CRYPTO (2013).

[46] Thaler, J., Roberts, M., Mitzenmacher, M., and Pfister,
H. Verifiable computation with massively parallel interactive
proofs. In Proc. HotCloud (2012).

[47] Vu, V., Setty, S., Blumberg, A. J., andWalfish, M. A hybrid
architecture for interactive verifiable computation. In Proc.
S&P (2013).

[48] Wahby, R. S., Setty, S., Ren, Z., Blumberg, A. J., andWalfish,
M. Efficient RAM and control flow in verifiable outsourced
computation. Cryptology ePrint 2014/674, 2014.

http://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf
http://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf
http://www.peri.umass.edu/fileadmin/pdf/working_papers/working_papers_301-350/WP322.pdf
http://www.icpsr.umich.edu/icpsrweb/deposit/
http://www.icpsr.umich.edu/icpsrweb/deposit/
http://idash.ucsd.edu/
www.nytimes.com/2006/10/22/magazine/22sciencefraud.html
www.nytimes.com/2006/10/22/magazine/22sciencefraud.html
https://www.ipums.org/

	1 Introduction
	2 Overview
	2.1 Goals
	2.2 Threat model
	2.3 Strawman solutions

	3 Background
	3.1 Differential Privacy 
	3.2 Proof-based verifiable computation
	3.3 Computing over a database
	3.4 Performance of verifiable computation

	4 The VFuzz language
	4.1 The Fuzz query language
	4.2 From Fuzz to VFuzz
	4.3 Are VFuzz programs safe?

	5 The VerDP system
	5.1 VerDP's workflow
	5.2 The structure of VFuzz programs
	5.3 Committing to the data set
	5.4 Phases of VerDP computations
	5.5 Proof verification
	5.6 Limitations

	6 Implementation
	7 Evaluation
	7.1 Queries
	7.2 Experimental setup
	7.3 Commitment generation
	7.4 Query compilation and EK generation
	7.5 Query execution and proof generation
	7.6 Proof verification
	7.7 Summary

	8 Related Work
	9 Conclusion and Future Work

